Linear regression based Bayesian predictive classification for speech recognition
نویسنده
چکیده
The uncertainty in parameter estimation due to the adverse environments deteriorates the classification performance for speech recognition. It becomes crucial to incorporate the parameter uncertainty into decision so that the classification robustness can be assured. In this paper, we propose a novel linear regression based Bayesian predictive classification (LRBPC) for robust speech recognition. This framework is constructed under the paradigm of linear regression adaptation of speech hidden Markov models (HMMs). Because the regression mapping between HMMs and adaptation data is ill posed, we properly characterize the uncertainty of regression parameters using a joint Gaussian distribution. A closed-form predictive distribution can be derived to set up the LRBPC decision for speech recognition. Such decision is robust compared to the plug-in maximum a posteriori (MAP) decision adopted in the maximum likelihood linear regression (MLLR) and MAP linear regression (MAPLR). Since the specified distribution belongs to the conjugate prior family, the evolutionary hyperparameters are established. With the statistically rich hyperparameters, the LRBPC achieves decision robustness. In the experiments, we find that LRBPC decision in cases of general linear regression as well as single variable linear regression attains significantly better recognition performance than MLLR and MAPLR adaptation.
منابع مشابه
Combined linear regression adaptation and Bayesian predictive classification for robust speech recognition
The uncertainty in parameter estimation due to the adverse environments deteriorates the speech recognition performance. It becomes crucial to incorporate the parameter uncertainty into decision so that the classification robustness can be assured. In this paper, we propose a linear regression based Bayesian predictive classification (LRBPC) for robust speech recognition. This framework is cons...
متن کاملEffects of Bayesian predictive classification using variational Bayesian posteriors for sparse training data in speech recognition
We introduce a robust classification method using Bayesian predictive distribution (Bayesian predictive classification, referred to as BPC) into speech recognition. We and others have recently proposed a total Bayesian framework for speech recognition, Variational Bayesian Estimation and Clustering for speech recognition (VBEC). VBEC includes an analytical derivation of approximate posterior di...
متن کاملRobust speech recognition based on Viterbi Bayesian predictive classification
In this paper, we investigate a new Bayesian predictive classi cation (BPC) approach to realize robust speech recognition when there exist mismatches between training and test conditions but no accurate knowledge of the mismatch mechanism is available. A speci c approximate BPC algorithm called Viterbi BPC (VBPC) is proposed for both isolated word and continuous speech recognition. The proposed...
متن کاملA study of prior sensitivity for Bayesian predictive classification based robust speech recognition
We previously introduced a new Bayesian predictive classification (BPC) approach to robust speech recognition and showed that BPC is capable of coping with many types of distortions. We also learned that the efficacy of the BPC algorithm is inflEenced by the appropriateness of the prior distribution for the mismatch being compensated. If the prior distribution fails to characterize the variabil...
متن کاملTitle A Bayesian predictive classification approach to robust speech recognition
We introduce a new Bayesian predictive classification (BPC) approach to robust speech recognition and apply the BPC framework to Gaussian mixture continuous density hidden Markov model based speech recognition. We propose and focus on one of the approximate BPC approach called quasiBayesian predictive classification (QBPC). In comparison with the standard plug-in maximum a posteriori decoding, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Speech and Audio Processing
دوره 11 شماره
صفحات -
تاریخ انتشار 2003